The performance of cricket fast bowlers almost entirely depends on two factors. The first is the amount of momentum developed in the run-up and maintained before the front foot contacting the floor. The second is the technique employed to generate and transfer momentum within the body during the bowling phase between the front foot contacting the floor and the release of the ball from the bowler’s hand.
Explosive activation
Elite males [complete the bowling phase in approximately 100 milliseconds. This is similar to the time required to explosively activate a single muscle. This limits the ability of bowlers to develop additional momentum using their muscles in the bowling phase and neutralises the effect of strength increases on ball speed.
This explains why maximising momentum generated during the run-up is preferred over generating muscular momentum during the bowling phase. It also explains why fast bowling top speeds have not increased despite recent advances in fast bowlers’ athletic abilities.
Interestingly, research on women fast bowlers has highlighted that bowlers who generate less momentum during the run-up and therefore have more time available to generate additional muscular momentum, adopt a movement pattern more akin to throwing. In this approach, the momentum generated in the run-up is added to via the use of large rotational torso muscles within the bowling phase.
Improvements to the performance of the large rotational torso muscles in men and women could possibly improve the generation of muscular momentum. But this approach is considered a sub-optimal technique by the research that’s been carried out on fast bowling.
A potential mechanism to increase the time available to develop more momentum from muscles would be to increase the range of motion that joints move through during the bowling phase.
Joint ‘hypermobility’
Recent research has highlighted that, on average, elite fast bowlers with an increased range of motion in the hip and shoulder had greater ball release speeds. It was also suggested that the bowlers’ techniques were probably influenced by their range of motion during their early learning years.
In addition, elbow hyperextension – where the joint travels beyond a straight position – has been shown to increase the speed of ball release by up to 5% during the bowling phase.